

Integrity ★ Service ★ Excellence

Overview of USAF NDE R&D Activities

1 MAR 2012

Steve Russ
Branch Chief, Nondestructive Evaluation
Materials & Manufacturing Directorate
Air Force Research Laboratory

Mission and Vision of NDE Branch

VISION

Reliable Nondestructive Quantitative Materials/Damage Characterization Regardless of Scale

MISSION

Lead, discover, develop and deliver NDE material/damage characterization technologies to assure maximum reliability and availability of current and future Air Force Systems

Aging Fleet

Ensuring Weapon System
Mission Generation

Key to Safety
Enabling CBM + Prognosis

Future Systems

NDE / NDI

- Critical element of ASIP and PSIP -- safety inspections!
- Used as a Risk Management tool (to lower/achieve acceptable risk)
- Attributes of RX's NDE/I Activities to meet USAF needs
 - 1. Maintain NDI infrastructure for field locations (TOs, training, etc)
 - 2. Engineering developments for short-term needs / rapid response

3. NDE research

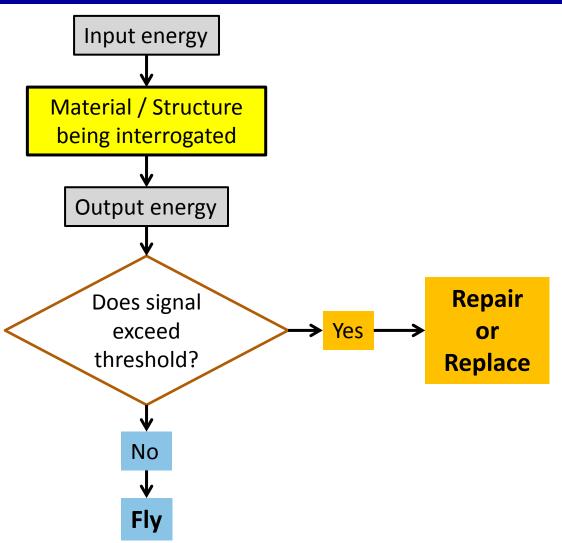
- Capability, Reliability, and Efficiency gains
- Enabler for CBM+ and HVM
 - ... must know the condition of the aircraft
- Discover methods to evaluate advanced materials
 - ... initial and changing states

Talking Points

Near-Term

Improve inspection tools and processes used by the USAF

Far-Term


- Enable paradigm shift ... know condition
- > Enable application of advanced materials

NDE as Traditionally used by USAF

Past RXLP R&D focus was better techniques to detect smaller flaws

- Very Valuable
- Very Successful

Today's Reality

What are we doing?

Better NDI/E

- Enhance capability ... to detect damage
- Improve reliability ... of detecting damage
- Increase efficiency ... in inspection processes

Emphasis Areas

- Advanced Eddy Current Probes
- Magnetoresistive (MR) sensing
- Remote Access
- Damage Characterization for Turbine Engine Components
- Model-Assisted Probability of Detection (MAPOD)

Conformal Eddy Current Probes Safety of Flight Inspections (SOFI)

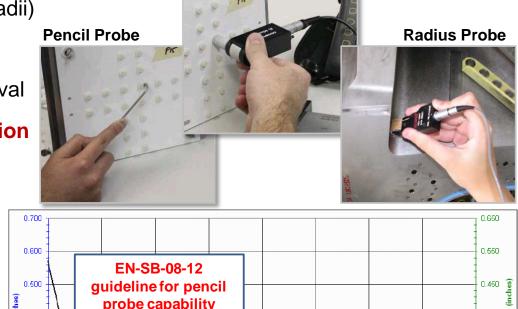
Motivation

 Inspection of features (fasteners, edges, radii) can be slow and difficult

 Capability insufficient to ensure safety at currently defined recurring inspection interval

Goal: More efficient and capable inspection

Solution


 Build off conformal eddy current probes developed for F-22

Approach

- Validate capability (POD study)
- Field initial kits

Payoff

- Increased inspection interval
- Reduced inspection time

ASSUMED capability

for pencil probe

4.0

Flight Hours to Next Inspection (* 1000)

3.0

Raised Head Fastener Probe

NDI capability in a tool that is easier to use that minimizes chances for human error

1.0

2.0

de 0.300

0.200

0.100

6.0

7.0

Anticipated capability for Raised Fastener Head probe

5.0

0.250

0.150 🕺

0.050

8.0

Magnetoresistive (MR) Sensing

Motivation

- Need to inspect internal surfaces of multi-layered structures
- Significant MX burden to gain access
- Low frequency EC from outer surface often inadequate

Goal: More efficient and capable inspection

Solution

MR sensing array

Approach

- Mature single-array MR technology
- Develop bi-lateral sensor and analysis software
- Integrate into mobile automated system (MAUS)
- Validate capability (POD study)
- Verify on KC-135 WS 360

Payoff

- Reduced MX burden
- Easier inspection processes

Provide better capability integrated into familiar equipment

Remote Access NDE

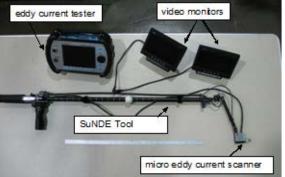
Motivation

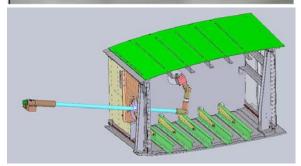
 Limited access often necessitates structural disassembly or inspectors working in constrained space

Goal: Reliable inspection tools for limited-access areas

Solution

- Rigid manipulation for open spaces
- Flexible manipulation for constrained spaces


Approach


- Lessons learned from Surgical NDE prototype
- High precision / remote sensor control / adjustable reach
- Integrate SOA sensing (EC, UT, etc)
- Validate inspections capability

Payoff

- Minimize disassembly / MX burden
- Better reliability for inspections of hard to reach areas

Provide a tool that is easy to use that can verify inspection was accomplished completely

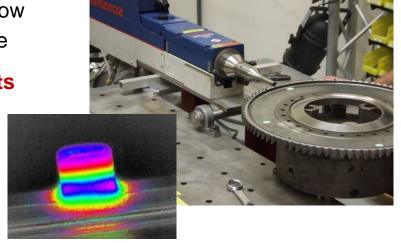
Damage Characterization for Turbine Engines

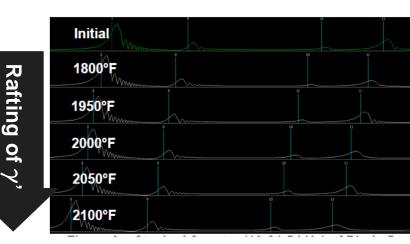
Motivation

- Eddy current: very good capability, but can be very slow
- FPI: Time consuming and generates hazardous waste

Goal: Quick and accurate inspection of components

Solution


Alternative whole-field inspection


Approach

- Sonic IR
- Process Compensated Resonance Testing (PCRT)
- Model-driven design and data interpretation
- Validate inspection capabilities / POD from imaged data

Payoff

- Reduce MX burden
- Eliminate hazardous waste stream
- Extension of component lives

Reduce MX burden & improve disposition decisions

Model-Assisted Probability of Detection

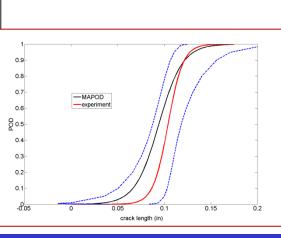
Motivation

- Must assess capability and reliability for NDI methods
- Experimental approaches are costly / time consuming

Goal: more efficient methods to conduct POD assessments

Solution


M&S to supplement experimental data


Approach

- Multiple levels of models all have a role
- Incorporate more of the physics into "forward" models
- Targeted experiments to validate
- Account for uncertainty

Payoff

- Quantify reliability of POD studies
- Improved risk assessments

Reduce experimental burden for POD studies

Talking Points

Near-Term

Improve inspection tools and processes used by the USAF

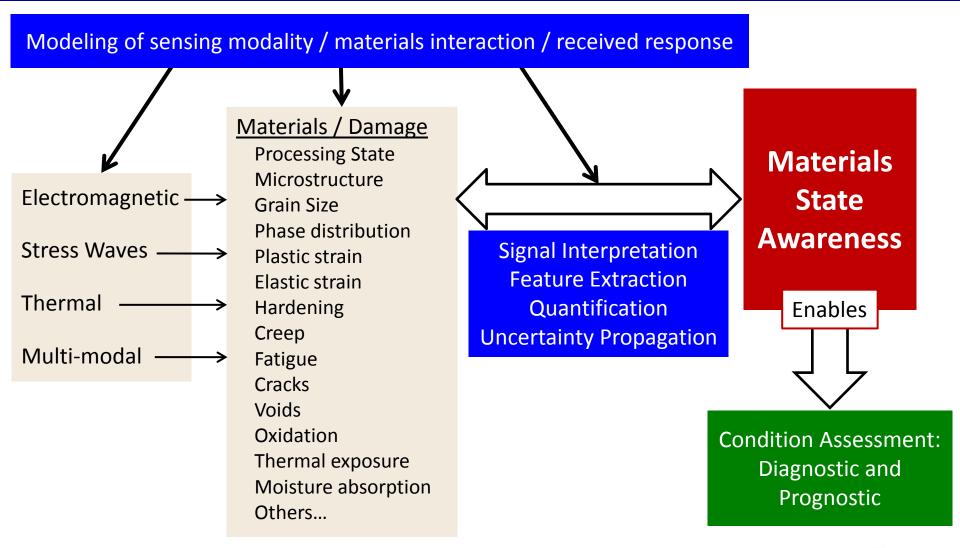
Far-Term

- Enable paradigm shift ... know condition
- > Enable application of advanced materials

Material State Awareness (MSA)

Reliable Nondestructive Quantitative Materials / Damage Characterization Regardless of Scale

- Complete characterization!
 - Macro scale (i.e. cracks and corrosion)
 - Detect ... Locate ... Size
 - Micro scale (e.g. microstructure)
- Metals, PMCs, CMCs
- Statistical metrics / uncertainty quantification


MSA is our vision for the future of NDE

NDE Role in CBM+ and HVM ... Assess Condition

In-House Research Challenges

Integrated Computational and Experimental Research

smaller &

incipient damage

- Modeling and simulation vital
- **Variability / confounding factors**
- **Validation**

initial & evolving (micro)structure characterization

processing microstructure evolution

residual stress

macroscopic

service damage characterization

Summary

- Nose-cone to rudder, cradle to grave, NDE touches entire aircraft
 - Sustains current capability
 - Enables future capability
- Model-centric strategy to realize future capability
 - Assess condition, not just detect
 - All dimensional scales
- Broad-based impact to improve availability of high performance, capable, and safe USAF systems
- New approaches for materials characterization
 - Materials development/tailored properties validation
 - Processing enhancements via property measurement and feedback

Capability, Reliability, and Efficiency

